2,647 research outputs found

    Humans, robots and values

    Get PDF
    The issue of machines replacing humans dates back to the dawn of industrialisation. In this paper we examine what is fundamental in the distinction between human and robotic work by reflecting on the work of the classical political economists and engineers. We examine the relationship between the ideas of machine work and human work on the part of Marx and Watt as well as their role in the creation of economic value. We examine the extent to which artificial power sources could feasibly substitute for human effort in their arguments. We go on to examine the differing views of Smith and Marx with respect to the economic effort contributed by animals and consider whether the philosophical distinction made between human and non-human work can be sustained in the light of modern biological research. We emphasise the non-universal character of animal work before going on to discuss the ideas of universal machines in Capek and Turing giving as a counter example a cloth-folding robot being developed in our School. We then return to Watt and discuss the development of thermodynamics and information theory. We show how recent research has led to a unification not only of these fields but also a unitary understanding of the labour process and the value-creation process. We look at the implications of general robotisation for profitability and the future of capitalism. For this we draw on the work of von Neumann not only on computers but also in economics to point to the {\em real} threat posed by robots

    Fast figuring of large optics by reactive atom plasma

    Get PDF
    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 ÎŒm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to& lambda;/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours

    The simpler, the better? Presenting the COPING Android permission-granting interface for better privacy-related decisions

    Get PDF
    One of the great innovations of the modern world is the Smartphone app. The sheer multitude of available apps attests to their popularity and general ability to satisfy our wants and needs. The flip side of the functionality these apps offer is their potential for privacy invasion. Apps can, if granted permission, gather a vast amount of very personal and sensitive information. App developers might exploit the combination of human propensities and the design of the Android permission-granting interface to gain permission to access more information than they really need. This compromises personal privacy. The fact that the Android is the globally dominant phone means widespread privacy invasion is a real concern. We, and other researchers, have proposed alternatives to the Android permission-granting interface. The aim of these alternatives is to highlight privacy considerations more effectively during app installation: to ensure that privacy becomes part of the decision-making process. We report here on a study with 344 participants that compared the impact of a number of permission-granting interface proposals, including our own (called the COPING interface — COmprehensive PermIssioN Granting) and two Android interfaces. To conduct the comparison we carried out an online study with a mixed-model design. Our main finding is that the focus in these interfaces ought to be on improving the quality of the provided information rather than merely simplifying the interface. The intuitive approach is to reduce and simplify information, but we discovered that this actually impairs the quality of the decision. Our recommendation is that further investigation is required in order to find the “sweet spot” where understandability and comprehensiveness are maximised

    Analyzing the Performance of Lock-Free Data Structures: A Conflict-based Model

    Full text link
    This paper considers the modeling and the analysis of the performance of lock-free concurrent data structures. Lock-free designs employ an optimistic conflict control mechanism, allowing several processes to access the shared data object at the same time. They guarantee that at least one concurrent operation finishes in a finite number of its own steps regardless of the state of the operations. Our analysis considers such lock-free data structures that can be represented as linear combinations of fixed size retry loops. Our main contribution is a new way of modeling and analyzing a general class of lock-free algorithms, achieving predictions of throughput that are close to what we observe in practice. We emphasize two kinds of conflicts that shape the performance: (i) hardware conflicts, due to concurrent calls to atomic primitives; (ii) logical conflicts, caused by simultaneous operations on the shared data structure. We show how to deal with these hardware and logical conflicts separately, and how to combine them, so as to calculate the throughput of lock-free algorithms. We propose also a common framework that enables a fair comparison between lock-free implementations by covering the whole contention domain, together with a better understanding of the performance impacting factors. This part of our analysis comes with a method for calculating a good back-off strategy to finely tune the performance of a lock-free algorithm. Our experimental results, based on a set of widely used concurrent data structures and on abstract lock-free designs, show that our analysis follows closely the actual code behavior.Comment: Short version to appear in DISC'1

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed

    CFD analysis of an enhanced nozzle designed for plasma figuring of large optical surfaces

    Get PDF
    For addressing the correction of Mid Spatial Frequency (MSF) errors on metre scale optical surfaces induced by sub aperture figuring process, a new generation of non-contact plasma based surface figuring tools has been created at Cranfield University. In this context, this paper presents an investigation that focuses on novel enhanced nozzles that were created for a Radio Frequency (RF) Inductively Coupled Plasma (ICP) torch. The characteristics of plasma jet delivered by prototype nozzle and a selected enhanced nozzle are compared using an in-house created CFD model. The enhanced nozzle design is based on the results previously obtained throughout a numerical analysis that enabled to identify the key design aspects of these nozzles. This enhanced nozzle is predicted to provide 12.5% smaller footprint and 15.5% higher temperature

    Microwaves enable activated plasma figuring for ultra-precision fabrication of optics

    Get PDF
    Activated plasma figuring using microwaves aims at providing highly efficient activated energy beams for rapid fabrication of optics. The chemical nature of this type of energy beam leads to targeting silicon-based materials. Furthermore this technology is proposed to address the needs of ultra-precision optical components. In this paper, we present a novel ADTEC microwavegenerated plasma torch design which is operated at atmospheric pressure. In this study, the plasma torch is fed with either argon or helium carrier gas. However this novel design for Plasma Figuring is targeted at local surface correction of crystal quartz which is a material of great interest for optical systems, such as acousto-optic devices. Also this novel design is targeted at reducing midspatial frequency errors such as waviness, ripple errors and residual sub-aperture tool footprints. These are responsible for the scattering of light at small angles, resulting in optical hazing effects, photonic energy loss and pixel cross-talk. Also the results of a preliminary investigation using Optical Emission Spectroscopy (OES) are reported and discussed. These results show the operat ing range when the main processing parameters are changed: microwave forward power values, gas flow rates and the types of gasses

    Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces

    Get PDF
    Plasma figuring is a dwell time fabrication process that uses a locally delivered chemical reaction through means of an inductively coupled plasma (ICP) torch to correct surface figure errors. This paper presents two investigations for a high temperature jet (5000 K) that is used in the context of the plasma figuring process. Firstly, an investigation focuses on the aerodynamic properties of this jet that streamed through the plasma torch De-Laval nozzle and impinged optical surfaces. Secondly, the work highlights quantitatively the effects of changing the distance between the processed surface and nozzle outlet. In both investigations, results of numerical models and experiments were correlated. The authors’ modelling approach is based on computational fluid dynamics (CFD). The model is specifically created for this harsh environment. Designated areas of interests in the model domain are the nozzle convergent-divergent and the impinged substrate regions. Strong correlations are highlighted between the gas flow velocity near the surface and material removal footprint profiles. In conclusion, the CFD model supports the optimization of an ICP torch design to fulfil the demand for the correction of ultra-precision surfaces

    Investigation of power dissipation in a collimated energy beam

    Get PDF
    To satisfy the worldwide demand for large ultra-precision optical surfaces, a fast process chain - grinding, polishing and plasma figuring- has been established by the Precision Engineering Institute at Cranfield University. The focus of Cranfield Plasma Figuring team is the creation of next generation of highly collimated energy beam for plasma figuring. Currently, plasma figuring has the capability to shorten processing duration for the correction of metre-scale optical surfaces. High form accuracy can be achieved (e.g. 2.5 hours and 31 nm RMS for 400mm diameter surface). However, it is known that Mid Spatial Frequency (MSF) surface errors are induced when the plasma figuring process is carried out. The work discussed in this paper deals with the characterisation of highly collimated plasma jets delivered by the Inductively Coupled Plasma (ICP) torches. Also a computational fluid dynamics (CFD) model is introduced. This model is used to assess the behaviour of the plasma jet within the best known processing condition. Finally temperature measurement experiments were performed to determine the energy dissipated values that characterise best the ICP torch coil and its De-Laval nozzle
    • 

    corecore